Exploring MODIS Products in GEE: A Complete Guide

SHARE:

Learn how to access and use MODIS products in Google Earth Engine for NDVI, land surface temperature, snow, fire, and more. Scripts and use cases

 MODIS (Moderate Resolution Imaging Spectroradiometer), aboard NASA’s Terra and Aqua satellites, provides daily to 16-day composite data across the globe. With a history that spans over two decades, MODIS products are essential for monitoring vegetation, temperature, snow cover, fire, and more.

Google Earth Engine (GEE) hosts an extensive archive of MODIS data, giving users direct access to dozens of products with just a few lines of code. This guide will walk you through how to access, visualize, and apply key MODIS products in GEE, including sample scripts and use case ideas.

MODIS Products Image of Fire Forest


1. Why Use MODIS Data in Google Earth Engine?

Feature Advantage
📅 Temporal coverage Data from 2000 to present
🛰️ Spatial coverage Global, consistent
🕒 Frequency Daily to 16-day composites
📏 Resolution 250m–1km, depending on the product
🔄 Pre-processed Cloud masking, corrections often applied

MODIS is ideal for trend analysisclimate research, and continental-scale studies.


2. How to Search MODIS Products Datasets in GEE

Use the GEE Data Catalog  and filter by:

  • Provider: NASAUSGS

  • Keyword: “MODIS”

  • Categories: VegetationClimateSurface Reflectance, etc.

You can also type in GEE's code editor:


// Search for MODIS datasets var datasets = ee.data.getList({id: 'MODIS'}); print(datasets);


3. Top MODIS Products in Earth Engine

🔹 MOD13Q1 – NDVI / EVI (Vegetation Index)

  • Spatial: 250m

  • Temporal: 16-day composite

  • Dataset ID: MODIS/006/MOD13Q1


var ndvi = ee.ImageCollection("MODIS/006/MOD13Q1") .select('NDVI') .filterDate('2023-01-01', '2023-12-31') .mean() .multiply(0.0001); // Scale factor Map.addLayer(ndvi, {min: 0, max: 0.8, palette: ['white', 'green']}, 'NDVI');

🔹 MOD11A1 – Land Surface Temperature (LST)

  • Spatial: 1km

  • Temporal: Daily

  • Dataset ID: MODIS/006/MOD11A1


var lst = ee.ImageCollection("MODIS/006/MOD11A1") .select('LST_Day_1km') .filterDate('2023-07-01', '2023-07-10') .mean() .multiply(0.02).subtract(273.15); // Kelvin to °C Map.addLayer(lst, {min: 10, max: 40, palette: ['blue', 'yellow', 'red']}, 'LST °C');

🔹 MOD10A1 – Snow Cover

  • Spatial: 500m

  • Temporal: Daily

  • Dataset ID: MODIS/006/MOD10A1


var snow = ee.ImageCollection("MODIS/006/MOD10A1") .select('NDSI_Snow_Cover') .filterDate('2023-01-01', '2023-01-31') .mean(); Map.addLayer(snow, {min: 0, max: 100, palette: ['gray', 'cyan', 'white']}, 'Snow Cover');

🔹 MCD64A1 – Burned Area (Fires)

  • Spatial: 500m

  • Temporal: Monthly

  • Dataset ID: MODIS/006/MCD64A1


var fire = ee.ImageCollection("MODIS/006/MCD64A1") .select('BurnDate') .filterDate('2023-06-01', '2023-07-01') .mean(); Map.addLayer(fire, {min: 0, max: 365, palette: ['black', 'orange', 'red']}, 'Burned Area');

🔹 MOD16A2 – Evapotranspiration (ET)

  • Spatial: 500m

  • Temporal: 8-day

  • Dataset ID: MODIS/006/MOD16A2


var et = ee.ImageCollection("MODIS/006/MOD16A2") .select('ET') .filterDate('2023-05-01', '2023-05-31') .mean() .multiply(0.1); // Scale factor Map.addLayer(et, {min: 0, max: 100, palette: ['white', 'blue', 'green']}, 'ET mm');


4. Working with MODIS Scale Factors

Many MODIS bands require scaling:

  • NDVI: × 0.0001

  • LST: × 0.02

  • ET: × 0.1

  • QA flags: Bitmasks to apply filtering (optional but recommended)

📏 Always read the MODIS product documentation or Earth Engine dataset description to apply correct units.


5. Common Applications of MODIS in GEE

Application Relevant Products
Vegetation health monitoring MOD13Q1, MOD09GA
Drought and water stress MOD16A2, MOD11A1
Fire detection and mapping MCD64A1
Snow and ice monitoring MOD10A1
Surface temperature trends MOD11A1, MOD21A1
Climate variability MOD17A2 (GPP), MOD16A2 (ET)

🔁 Combine multiple products for richer environmental analysis.

 

6. Tips for Working with MODIS in GEE

  • Temporal aggregation: MODIS offers dense time series—use mean()median(), or mosaic() for smoothing.

  • Mask clouds and outliers using quality assurance (QA) bands or thresholds.

  • Use Region Reduction (reduceRegion) to extract statistics.

  • Export time series charts with ui.Chart.image.series.


7. How to Visualize MODIS Time Series

Example: NDVI over time for a region:


var region = ee.Geometry.Point([36.8, -1.3]); // Nairobi var ndviSeries = ee.ImageCollection("MODIS/006/MOD13Q1") .select('NDVI') .filterBounds(region) .filterDate('2022-01-01', '2023-01-01'); var chart = ui.Chart.image.series({ imageCollection: ndviSeries, region: region, scale: 250, xProperty: 'system:time_start' }).setOptions({title: 'NDVI Time Series'}); print(chart);

8. Exporting MODIS Data from GEE

To export an NDVI layer:


Export.image.toDrive({ image: ndvi, description: 'MODIS_NDVI_2023', region: region, scale: 250, maxPixels: 1e13 });

📁 You can also export as .CSV or to Google Drive/Cloud Storage.


Conclusion

MODIS Products is a cornerstone dataset in Earth Engine, providing rich, multi-year, multi-variable data that supports global environmental research, land cover mapping, and climate monitoring. By mastering MODIS products, you unlock a toolbox for powerful, scalable geospatial analysis.

Explore it, script it, visualize it—MODIS in GEE is the gateway to understanding our dynamic planet.

🔗 Related Articles:



Written by: Jamal Chaaouan | GEE Academy

COMMENTS

Name

CHIRPS,1,Climate,1,Cloud masking,1,DEM,1,EVI,3,Export,2,Fire forest,1,Forest,1,GEE,1,GEE Academy,3,GEE script,1,Image analysis,6,JRC,1,Landsat,1,LST,1,MODIS,4,NDVI,5,NOAA,1,remote sensing,2,Sentinel,2,Sentinel-2,1,Snow,1,SRTM,3,temperature,1,time series,1,vegetation index,3,VIIRS,1,
ltr
item
GEE Academy: Exploring MODIS Products in GEE: A Complete Guide
Exploring MODIS Products in GEE: A Complete Guide
Learn how to access and use MODIS products in Google Earth Engine for NDVI, land surface temperature, snow, fire, and more. Scripts and use cases
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjs28GP3Jzqt2W-PCjsrXLHDIGajkxfEpi79ng_Co_CUgQuskJfahyVqww6zknrQrxVy3XykI0RqDTdR45Xl2PT3rzFmLeA0UmWkIrsmUgUqL3EVYSKWZPH6ZCFalwj3sJ1Kpc6oEFJSPTDVFufaUEPqfy7xzVD65obOiu1ncXTBGPuUXY1t_Dxr1l8H4I/w640-h322/MODISIMAGEGEOJAMAL.png
https://blogger.googleusercontent.com/img/b/R29vZ2xl/AVvXsEjs28GP3Jzqt2W-PCjsrXLHDIGajkxfEpi79ng_Co_CUgQuskJfahyVqww6zknrQrxVy3XykI0RqDTdR45Xl2PT3rzFmLeA0UmWkIrsmUgUqL3EVYSKWZPH6ZCFalwj3sJ1Kpc6oEFJSPTDVFufaUEPqfy7xzVD65obOiu1ncXTBGPuUXY1t_Dxr1l8H4I/s72-w640-c-h322/MODISIMAGEGEOJAMAL.png
GEE Academy
https://gee.geojamal.com/2025/04/exploring-modis-products-in-gee.html
https://gee.geojamal.com/
https://gee.geojamal.com/
https://gee.geojamal.com/2025/04/exploring-modis-products-in-gee.html
true
3421025227311197355
UTF-8
Loaded All Posts Not found any posts VIEW ALL Readmore Reply Cancel reply Delete By Home PAGES POSTS View All RECOMMENDED FOR YOU LABEL ARCHIVE SEARCH ALL POSTS Not found any post match with your request Back Home Sunday Monday Tuesday Wednesday Thursday Friday Saturday Sun Mon Tue Wed Thu Fri Sat January February March April May June July August September October November December Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec just now 1 minute ago $$1$$ minutes ago 1 hour ago $$1$$ hours ago Yesterday $$1$$ days ago $$1$$ weeks ago more than 5 weeks ago Followers Follow THIS PREMIUM CONTENT IS LOCKED STEP 1: Share to a social network STEP 2: Click the link on your social network Copy All Code Select All Code All codes were copied to your clipboard Can not copy the codes / texts, please press [CTRL]+[C] (or CMD+C with Mac) to copy Table of Content